VLAN418_RADI – 10.44.100.101

VLAN: 418CIDR: 10.44.100.0/22, 193.224.48.64/27, 192.9.200.0/24NAT: 193.224.49.26Nessus mappa: 1472
Scan: RADIDátum: 2026-02-02 08:22

MEDIUM (11)

SSL Certificate with Wrong Hostname
Plugin ID: 45411 Port: tcp/443
The 'commonName' (CN) attribute of the SSL certificate presented for this service is for a different machine.
Javasolt megoldás
Purchase or generate a proper SSL certificate for this service.
SSL Certificate with Wrong Hostname
Plugin ID: 45411 Port: tcp/5001
The 'commonName' (CN) attribute of the SSL certificate presented for this service is for a different machine.
Javasolt megoldás
Purchase or generate a proper SSL certificate for this service.
SSL Certificate Cannot Be Trusted
Plugin ID: 51192 Port: tcp/443
The server's X.509 certificate cannot be trusted. This situation can occur in three different ways, in which the chain of trust can be broken, as stated below : - First, the top of the certificate chain sent by the server might not be descended from a known public certificate authority. This can occur either when the top of the chain is an unrecognized, self-signed certificate, or when intermediate certificates are missing that would connect the top of the certificate chain to a known public certificate authority. - Second, the certificate chain may contain a certificate that is not valid at the time of the scan. This can occur either when the scan occurs before one of the certificate's 'notBefore' dates, or after one of the certificate's 'notAfter' dates. - Third, the certificate chain may contain a signature that either didn't match the certificate's information or could not be verified. Bad signatures can be fixed by getting the certificate with the bad signature to be re-signed by its issuer. Signatures that could not be verified are the result of the certificate's issuer using a signing algorithm that Nessus either does not support or does not recognize. If the remote host is a public host in production, any break in the chain makes it more difficult for users to verify the authenticity and identity of the web server. This could make it easier to carry out man-in-the-middle attacks against the remote host.
Javasolt megoldás
Purchase or generate a proper SSL certificate for this service.
SSL Certificate Cannot Be Trusted
Plugin ID: 51192 Port: tcp/5001
The server's X.509 certificate cannot be trusted. This situation can occur in three different ways, in which the chain of trust can be broken, as stated below : - First, the top of the certificate chain sent by the server might not be descended from a known public certificate authority. This can occur either when the top of the chain is an unrecognized, self-signed certificate, or when intermediate certificates are missing that would connect the top of the certificate chain to a known public certificate authority. - Second, the certificate chain may contain a certificate that is not valid at the time of the scan. This can occur either when the scan occurs before one of the certificate's 'notBefore' dates, or after one of the certificate's 'notAfter' dates. - Third, the certificate chain may contain a signature that either didn't match the certificate's information or could not be verified. Bad signatures can be fixed by getting the certificate with the bad signature to be re-signed by its issuer. Signatures that could not be verified are the result of the certificate's issuer using a signing algorithm that Nessus either does not support or does not recognize. If the remote host is a public host in production, any break in the chain makes it more difficult for users to verify the authenticity and identity of the web server. This could make it easier to carry out man-in-the-middle attacks against the remote host.
Javasolt megoldás
Purchase or generate a proper SSL certificate for this service.
SMB Signing not required
Plugin ID: 57608 Port: tcp/445
Signing is not required on the remote SMB server. An unauthenticated, remote attacker can exploit this to conduct man-in-the-middle attacks against the SMB server.
Javasolt megoldás
Enforce message signing in the host's configuration. On Windows, this is found in the policy setting 'Microsoft network server: Digitally sign communications (always)'. On Samba, the setting is called 'server signing'. See the 'see also' links for further details.
OpenSSH < 9.6 Multiple Vulnerabilities
Plugin ID: 187201 Port: tcp/2121 CVE: CVE-2023-48795
The version of OpenSSH installed on the remote host is prior to 9.6. It is, therefore, affected by multiple vulnerabilities as referenced in the release-9.6 advisory. - ssh(1), sshd(8): implement protocol extensions to thwart the so-called Terrapin attack discovered by Fabian Bumer, Marcus Brinkmann and Jrg Schwenk. This attack allows a MITM to effect a limited break of the integrity of the early encrypted SSH transport protocol by sending extra messages prior to the commencement of encryption, and deleting an equal number of consecutive messages immediately after encryption starts. A peer SSH client/server would not be able to detect that messages were deleted. While cryptographically novel, the security impact of this attack is fortunately very limited as it only allows deletion of consecutive messages, and deleting most messages at this stage of the protocol prevents user user authentication from proceeding and results in a stuck connection. The most serious identified impact is that it lets a MITM to delete the SSH2_MSG_EXT_INFO message sent before authentication starts, allowing the attacker to disable a subset of the keystroke timing obfuscation features introduced in OpenSSH 9.5. There is no other discernable impact to session secrecy or session integrity. OpenSSH 9.6 addresses this protocol weakness through a new strict KEX protocol extension that will be automatically enabled when both the client and server support it. This extension makes two changes to the SSH transport protocol to improve the integrity of the initial key exchange. Firstly, it requires endpoints to terminate the connection if any unnecessary or unexpected message is received during key exchange (including messages that were previously legal but not strictly required like SSH2_MSG_DEBUG). This removes most malleability from the early protocol. Secondly, it resets the Message Authentication Code counter at the conclusion of each key exchange, preventing previously inserted messages from being able to make persistent changes to the sequence number across completion of a key exchange. Either of these changes should be sufficient to thwart the Terrapin Attack. More details of these changes are in the PROTOCOL file in the OpenSSH source distribition. (CVE-2023-48795) - ssh-agent(1): when adding PKCS#11-hosted private keys while specifying destination constraints, if the PKCS#11 token returned multiple keys then only the first key had the constraints applied. Use of regular private keys, FIDO tokens and unconstrained keys are unaffected. (CVE-2023-51384) - ssh(1): if an invalid user or hostname that contained shell metacharacters was passed to ssh(1), and a ProxyCommand, LocalCommand directive or match exec predicate referenced the user or hostname via %u, %h or similar expansion token, then an attacker who could supply arbitrary user/hostnames to ssh(1) could potentially perform command injection depending on what quoting was present in the user-supplied ssh_config(5) directive. This situation could arise in the case of git submodules, where a repository could contain a submodule with shell characters in its user/hostname. Git does not ban shell metacharacters in user or host names when checking out repositories from untrusted sources. Although we believe it is the user's responsibility to ensure validity of arguments passed to ssh(1), especially across a security boundary such as the git example above, OpenSSH 9.6 now bans most shell metacharacters from user and hostnames supplied via the command-line. This countermeasure is not guaranteed to be effective in all situations, as it is infeasible for ssh(1) to universally filter shell metacharacters potentially relevant to user-supplied commands. User/hostnames provided via ssh_config(5) are not subject to these restrictions, allowing configurations that use strange names to continue to be used, under the assumption that the user knows what they are doing in their own configuration files. (CVE-2023-51385) Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 9.6 or later.
OpenSSH < 9.6 Multiple Vulnerabilities
Plugin ID: 187201 Port: tcp/2121 CVE: CVE-2023-51384
The version of OpenSSH installed on the remote host is prior to 9.6. It is, therefore, affected by multiple vulnerabilities as referenced in the release-9.6 advisory. - ssh(1), sshd(8): implement protocol extensions to thwart the so-called Terrapin attack discovered by Fabian Bumer, Marcus Brinkmann and Jrg Schwenk. This attack allows a MITM to effect a limited break of the integrity of the early encrypted SSH transport protocol by sending extra messages prior to the commencement of encryption, and deleting an equal number of consecutive messages immediately after encryption starts. A peer SSH client/server would not be able to detect that messages were deleted. While cryptographically novel, the security impact of this attack is fortunately very limited as it only allows deletion of consecutive messages, and deleting most messages at this stage of the protocol prevents user user authentication from proceeding and results in a stuck connection. The most serious identified impact is that it lets a MITM to delete the SSH2_MSG_EXT_INFO message sent before authentication starts, allowing the attacker to disable a subset of the keystroke timing obfuscation features introduced in OpenSSH 9.5. There is no other discernable impact to session secrecy or session integrity. OpenSSH 9.6 addresses this protocol weakness through a new strict KEX protocol extension that will be automatically enabled when both the client and server support it. This extension makes two changes to the SSH transport protocol to improve the integrity of the initial key exchange. Firstly, it requires endpoints to terminate the connection if any unnecessary or unexpected message is received during key exchange (including messages that were previously legal but not strictly required like SSH2_MSG_DEBUG). This removes most malleability from the early protocol. Secondly, it resets the Message Authentication Code counter at the conclusion of each key exchange, preventing previously inserted messages from being able to make persistent changes to the sequence number across completion of a key exchange. Either of these changes should be sufficient to thwart the Terrapin Attack. More details of these changes are in the PROTOCOL file in the OpenSSH source distribition. (CVE-2023-48795) - ssh-agent(1): when adding PKCS#11-hosted private keys while specifying destination constraints, if the PKCS#11 token returned multiple keys then only the first key had the constraints applied. Use of regular private keys, FIDO tokens and unconstrained keys are unaffected. (CVE-2023-51384) - ssh(1): if an invalid user or hostname that contained shell metacharacters was passed to ssh(1), and a ProxyCommand, LocalCommand directive or match exec predicate referenced the user or hostname via %u, %h or similar expansion token, then an attacker who could supply arbitrary user/hostnames to ssh(1) could potentially perform command injection depending on what quoting was present in the user-supplied ssh_config(5) directive. This situation could arise in the case of git submodules, where a repository could contain a submodule with shell characters in its user/hostname. Git does not ban shell metacharacters in user or host names when checking out repositories from untrusted sources. Although we believe it is the user's responsibility to ensure validity of arguments passed to ssh(1), especially across a security boundary such as the git example above, OpenSSH 9.6 now bans most shell metacharacters from user and hostnames supplied via the command-line. This countermeasure is not guaranteed to be effective in all situations, as it is infeasible for ssh(1) to universally filter shell metacharacters potentially relevant to user-supplied commands. User/hostnames provided via ssh_config(5) are not subject to these restrictions, allowing configurations that use strange names to continue to be used, under the assumption that the user knows what they are doing in their own configuration files. (CVE-2023-51385) Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 9.6 or later.
OpenSSH < 9.6 Multiple Vulnerabilities
Plugin ID: 187201 Port: tcp/2121 CVE: CVE-2023-51385
The version of OpenSSH installed on the remote host is prior to 9.6. It is, therefore, affected by multiple vulnerabilities as referenced in the release-9.6 advisory. - ssh(1), sshd(8): implement protocol extensions to thwart the so-called Terrapin attack discovered by Fabian Bumer, Marcus Brinkmann and Jrg Schwenk. This attack allows a MITM to effect a limited break of the integrity of the early encrypted SSH transport protocol by sending extra messages prior to the commencement of encryption, and deleting an equal number of consecutive messages immediately after encryption starts. A peer SSH client/server would not be able to detect that messages were deleted. While cryptographically novel, the security impact of this attack is fortunately very limited as it only allows deletion of consecutive messages, and deleting most messages at this stage of the protocol prevents user user authentication from proceeding and results in a stuck connection. The most serious identified impact is that it lets a MITM to delete the SSH2_MSG_EXT_INFO message sent before authentication starts, allowing the attacker to disable a subset of the keystroke timing obfuscation features introduced in OpenSSH 9.5. There is no other discernable impact to session secrecy or session integrity. OpenSSH 9.6 addresses this protocol weakness through a new strict KEX protocol extension that will be automatically enabled when both the client and server support it. This extension makes two changes to the SSH transport protocol to improve the integrity of the initial key exchange. Firstly, it requires endpoints to terminate the connection if any unnecessary or unexpected message is received during key exchange (including messages that were previously legal but not strictly required like SSH2_MSG_DEBUG). This removes most malleability from the early protocol. Secondly, it resets the Message Authentication Code counter at the conclusion of each key exchange, preventing previously inserted messages from being able to make persistent changes to the sequence number across completion of a key exchange. Either of these changes should be sufficient to thwart the Terrapin Attack. More details of these changes are in the PROTOCOL file in the OpenSSH source distribition. (CVE-2023-48795) - ssh-agent(1): when adding PKCS#11-hosted private keys while specifying destination constraints, if the PKCS#11 token returned multiple keys then only the first key had the constraints applied. Use of regular private keys, FIDO tokens and unconstrained keys are unaffected. (CVE-2023-51384) - ssh(1): if an invalid user or hostname that contained shell metacharacters was passed to ssh(1), and a ProxyCommand, LocalCommand directive or match exec predicate referenced the user or hostname via %u, %h or similar expansion token, then an attacker who could supply arbitrary user/hostnames to ssh(1) could potentially perform command injection depending on what quoting was present in the user-supplied ssh_config(5) directive. This situation could arise in the case of git submodules, where a repository could contain a submodule with shell characters in its user/hostname. Git does not ban shell metacharacters in user or host names when checking out repositories from untrusted sources. Although we believe it is the user's responsibility to ensure validity of arguments passed to ssh(1), especially across a security boundary such as the git example above, OpenSSH 9.6 now bans most shell metacharacters from user and hostnames supplied via the command-line. This countermeasure is not guaranteed to be effective in all situations, as it is infeasible for ssh(1) to universally filter shell metacharacters potentially relevant to user-supplied commands. User/hostnames provided via ssh_config(5) are not subject to these restrictions, allowing configurations that use strange names to continue to be used, under the assumption that the user knows what they are doing in their own configuration files. (CVE-2023-51385) Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 9.6 or later.
OpenSSH < 9.6 Multiple Vulnerabilities
Plugin ID: 187201 Port: tcp/2323 CVE: CVE-2023-48795
The version of OpenSSH installed on the remote host is prior to 9.6. It is, therefore, affected by multiple vulnerabilities as referenced in the release-9.6 advisory. - ssh(1), sshd(8): implement protocol extensions to thwart the so-called Terrapin attack discovered by Fabian Bumer, Marcus Brinkmann and Jrg Schwenk. This attack allows a MITM to effect a limited break of the integrity of the early encrypted SSH transport protocol by sending extra messages prior to the commencement of encryption, and deleting an equal number of consecutive messages immediately after encryption starts. A peer SSH client/server would not be able to detect that messages were deleted. While cryptographically novel, the security impact of this attack is fortunately very limited as it only allows deletion of consecutive messages, and deleting most messages at this stage of the protocol prevents user user authentication from proceeding and results in a stuck connection. The most serious identified impact is that it lets a MITM to delete the SSH2_MSG_EXT_INFO message sent before authentication starts, allowing the attacker to disable a subset of the keystroke timing obfuscation features introduced in OpenSSH 9.5. There is no other discernable impact to session secrecy or session integrity. OpenSSH 9.6 addresses this protocol weakness through a new strict KEX protocol extension that will be automatically enabled when both the client and server support it. This extension makes two changes to the SSH transport protocol to improve the integrity of the initial key exchange. Firstly, it requires endpoints to terminate the connection if any unnecessary or unexpected message is received during key exchange (including messages that were previously legal but not strictly required like SSH2_MSG_DEBUG). This removes most malleability from the early protocol. Secondly, it resets the Message Authentication Code counter at the conclusion of each key exchange, preventing previously inserted messages from being able to make persistent changes to the sequence number across completion of a key exchange. Either of these changes should be sufficient to thwart the Terrapin Attack. More details of these changes are in the PROTOCOL file in the OpenSSH source distribition. (CVE-2023-48795) - ssh-agent(1): when adding PKCS#11-hosted private keys while specifying destination constraints, if the PKCS#11 token returned multiple keys then only the first key had the constraints applied. Use of regular private keys, FIDO tokens and unconstrained keys are unaffected. (CVE-2023-51384) - ssh(1): if an invalid user or hostname that contained shell metacharacters was passed to ssh(1), and a ProxyCommand, LocalCommand directive or match exec predicate referenced the user or hostname via %u, %h or similar expansion token, then an attacker who could supply arbitrary user/hostnames to ssh(1) could potentially perform command injection depending on what quoting was present in the user-supplied ssh_config(5) directive. This situation could arise in the case of git submodules, where a repository could contain a submodule with shell characters in its user/hostname. Git does not ban shell metacharacters in user or host names when checking out repositories from untrusted sources. Although we believe it is the user's responsibility to ensure validity of arguments passed to ssh(1), especially across a security boundary such as the git example above, OpenSSH 9.6 now bans most shell metacharacters from user and hostnames supplied via the command-line. This countermeasure is not guaranteed to be effective in all situations, as it is infeasible for ssh(1) to universally filter shell metacharacters potentially relevant to user-supplied commands. User/hostnames provided via ssh_config(5) are not subject to these restrictions, allowing configurations that use strange names to continue to be used, under the assumption that the user knows what they are doing in their own configuration files. (CVE-2023-51385) Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 9.6 or later.
OpenSSH < 9.6 Multiple Vulnerabilities
Plugin ID: 187201 Port: tcp/2323 CVE: CVE-2023-51384
The version of OpenSSH installed on the remote host is prior to 9.6. It is, therefore, affected by multiple vulnerabilities as referenced in the release-9.6 advisory. - ssh(1), sshd(8): implement protocol extensions to thwart the so-called Terrapin attack discovered by Fabian Bumer, Marcus Brinkmann and Jrg Schwenk. This attack allows a MITM to effect a limited break of the integrity of the early encrypted SSH transport protocol by sending extra messages prior to the commencement of encryption, and deleting an equal number of consecutive messages immediately after encryption starts. A peer SSH client/server would not be able to detect that messages were deleted. While cryptographically novel, the security impact of this attack is fortunately very limited as it only allows deletion of consecutive messages, and deleting most messages at this stage of the protocol prevents user user authentication from proceeding and results in a stuck connection. The most serious identified impact is that it lets a MITM to delete the SSH2_MSG_EXT_INFO message sent before authentication starts, allowing the attacker to disable a subset of the keystroke timing obfuscation features introduced in OpenSSH 9.5. There is no other discernable impact to session secrecy or session integrity. OpenSSH 9.6 addresses this protocol weakness through a new strict KEX protocol extension that will be automatically enabled when both the client and server support it. This extension makes two changes to the SSH transport protocol to improve the integrity of the initial key exchange. Firstly, it requires endpoints to terminate the connection if any unnecessary or unexpected message is received during key exchange (including messages that were previously legal but not strictly required like SSH2_MSG_DEBUG). This removes most malleability from the early protocol. Secondly, it resets the Message Authentication Code counter at the conclusion of each key exchange, preventing previously inserted messages from being able to make persistent changes to the sequence number across completion of a key exchange. Either of these changes should be sufficient to thwart the Terrapin Attack. More details of these changes are in the PROTOCOL file in the OpenSSH source distribition. (CVE-2023-48795) - ssh-agent(1): when adding PKCS#11-hosted private keys while specifying destination constraints, if the PKCS#11 token returned multiple keys then only the first key had the constraints applied. Use of regular private keys, FIDO tokens and unconstrained keys are unaffected. (CVE-2023-51384) - ssh(1): if an invalid user or hostname that contained shell metacharacters was passed to ssh(1), and a ProxyCommand, LocalCommand directive or match exec predicate referenced the user or hostname via %u, %h or similar expansion token, then an attacker who could supply arbitrary user/hostnames to ssh(1) could potentially perform command injection depending on what quoting was present in the user-supplied ssh_config(5) directive. This situation could arise in the case of git submodules, where a repository could contain a submodule with shell characters in its user/hostname. Git does not ban shell metacharacters in user or host names when checking out repositories from untrusted sources. Although we believe it is the user's responsibility to ensure validity of arguments passed to ssh(1), especially across a security boundary such as the git example above, OpenSSH 9.6 now bans most shell metacharacters from user and hostnames supplied via the command-line. This countermeasure is not guaranteed to be effective in all situations, as it is infeasible for ssh(1) to universally filter shell metacharacters potentially relevant to user-supplied commands. User/hostnames provided via ssh_config(5) are not subject to these restrictions, allowing configurations that use strange names to continue to be used, under the assumption that the user knows what they are doing in their own configuration files. (CVE-2023-51385) Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 9.6 or later.
OpenSSH < 9.6 Multiple Vulnerabilities
Plugin ID: 187201 Port: tcp/2323 CVE: CVE-2023-51385
The version of OpenSSH installed on the remote host is prior to 9.6. It is, therefore, affected by multiple vulnerabilities as referenced in the release-9.6 advisory. - ssh(1), sshd(8): implement protocol extensions to thwart the so-called Terrapin attack discovered by Fabian Bumer, Marcus Brinkmann and Jrg Schwenk. This attack allows a MITM to effect a limited break of the integrity of the early encrypted SSH transport protocol by sending extra messages prior to the commencement of encryption, and deleting an equal number of consecutive messages immediately after encryption starts. A peer SSH client/server would not be able to detect that messages were deleted. While cryptographically novel, the security impact of this attack is fortunately very limited as it only allows deletion of consecutive messages, and deleting most messages at this stage of the protocol prevents user user authentication from proceeding and results in a stuck connection. The most serious identified impact is that it lets a MITM to delete the SSH2_MSG_EXT_INFO message sent before authentication starts, allowing the attacker to disable a subset of the keystroke timing obfuscation features introduced in OpenSSH 9.5. There is no other discernable impact to session secrecy or session integrity. OpenSSH 9.6 addresses this protocol weakness through a new strict KEX protocol extension that will be automatically enabled when both the client and server support it. This extension makes two changes to the SSH transport protocol to improve the integrity of the initial key exchange. Firstly, it requires endpoints to terminate the connection if any unnecessary or unexpected message is received during key exchange (including messages that were previously legal but not strictly required like SSH2_MSG_DEBUG). This removes most malleability from the early protocol. Secondly, it resets the Message Authentication Code counter at the conclusion of each key exchange, preventing previously inserted messages from being able to make persistent changes to the sequence number across completion of a key exchange. Either of these changes should be sufficient to thwart the Terrapin Attack. More details of these changes are in the PROTOCOL file in the OpenSSH source distribition. (CVE-2023-48795) - ssh-agent(1): when adding PKCS#11-hosted private keys while specifying destination constraints, if the PKCS#11 token returned multiple keys then only the first key had the constraints applied. Use of regular private keys, FIDO tokens and unconstrained keys are unaffected. (CVE-2023-51384) - ssh(1): if an invalid user or hostname that contained shell metacharacters was passed to ssh(1), and a ProxyCommand, LocalCommand directive or match exec predicate referenced the user or hostname via %u, %h or similar expansion token, then an attacker who could supply arbitrary user/hostnames to ssh(1) could potentially perform command injection depending on what quoting was present in the user-supplied ssh_config(5) directive. This situation could arise in the case of git submodules, where a repository could contain a submodule with shell characters in its user/hostname. Git does not ban shell metacharacters in user or host names when checking out repositories from untrusted sources. Although we believe it is the user's responsibility to ensure validity of arguments passed to ssh(1), especially across a security boundary such as the git example above, OpenSSH 9.6 now bans most shell metacharacters from user and hostnames supplied via the command-line. This countermeasure is not guaranteed to be effective in all situations, as it is infeasible for ssh(1) to universally filter shell metacharacters potentially relevant to user-supplied commands. User/hostnames provided via ssh_config(5) are not subject to these restrictions, allowing configurations that use strange names to continue to be used, under the assumption that the user knows what they are doing in their own configuration files. (CVE-2023-51385) Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 9.6 or later.

LOW (7)

ICMP Timestamp Request Remote Date Disclosure
Plugin ID: 10114 Port: icmp/0 CVE: CVE-1999-0524
The remote host answers to an ICMP timestamp request. This allows an attacker to know the date that is set on the targeted machine, which may assist an unauthenticated, remote attacker in defeating time-based authentication protocols. Timestamps returned from machines running Windows Vista / 7 / 2008 / 2008 R2 are deliberately incorrect, but usually within 1000 seconds of the actual system time.
Javasolt megoldás
Filter out the ICMP timestamp requests (13), and the outgoing ICMP timestamp replies (14).
OpenSSH < 10.0 DisableForwarding
Plugin ID: 234554 Port: tcp/2121 CVE: CVE-2025-32728
The version of OpenSSH installed on the remote host is prior to 10.0. It is, therefore, affected by a vulnerability. In sshd in OpenSSH the DisableForwarding directive does not adhere to the documentation stating that it disables X11 and agent forwarding. Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 10.0 or later.
OpenSSH < 10.0 DisableForwarding
Plugin ID: 234554 Port: tcp/2323 CVE: CVE-2025-32728
The version of OpenSSH installed on the remote host is prior to 10.0. It is, therefore, affected by a vulnerability. In sshd in OpenSSH the DisableForwarding directive does not adhere to the documentation stating that it disables X11 and agent forwarding. Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 10.0 or later.
OpenSSH < 10.1 / 10.1p1 Multiple Vulnerabilities
Plugin ID: 269984 Port: tcp/2121 CVE: CVE-2025-61984
The version of OpenSSH installed on the remote host is prior to 10.1. It is, therefore, affected by multiple vulnerabilities: - ssh in OpenSSH before 10.1 allows control characters in usernames that originate from certain possibly untrusted sources, potentially leading to code execution when a ProxyCommand is used. The untrusted sources are the command line and %-sequence expansion of a configuration file. (A configuration file that provides a complete literal username is not categorized as an untrusted source.) (CVE-2025-61984) - ssh in OpenSSH before 10.1 allows the '\0' character in an ssh:// URI, potentially leading to code execution when a ProxyCommand is used. (CVE-2025-61985) Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 10.1/10.1p1 or later.
OpenSSH < 10.1 / 10.1p1 Multiple Vulnerabilities
Plugin ID: 269984 Port: tcp/2121 CVE: CVE-2025-61985
The version of OpenSSH installed on the remote host is prior to 10.1. It is, therefore, affected by multiple vulnerabilities: - ssh in OpenSSH before 10.1 allows control characters in usernames that originate from certain possibly untrusted sources, potentially leading to code execution when a ProxyCommand is used. The untrusted sources are the command line and %-sequence expansion of a configuration file. (A configuration file that provides a complete literal username is not categorized as an untrusted source.) (CVE-2025-61984) - ssh in OpenSSH before 10.1 allows the '\0' character in an ssh:// URI, potentially leading to code execution when a ProxyCommand is used. (CVE-2025-61985) Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 10.1/10.1p1 or later.
OpenSSH < 10.1 / 10.1p1 Multiple Vulnerabilities
Plugin ID: 269984 Port: tcp/2323 CVE: CVE-2025-61984
The version of OpenSSH installed on the remote host is prior to 10.1. It is, therefore, affected by multiple vulnerabilities: - ssh in OpenSSH before 10.1 allows control characters in usernames that originate from certain possibly untrusted sources, potentially leading to code execution when a ProxyCommand is used. The untrusted sources are the command line and %-sequence expansion of a configuration file. (A configuration file that provides a complete literal username is not categorized as an untrusted source.) (CVE-2025-61984) - ssh in OpenSSH before 10.1 allows the '\0' character in an ssh:// URI, potentially leading to code execution when a ProxyCommand is used. (CVE-2025-61985) Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 10.1/10.1p1 or later.
OpenSSH < 10.1 / 10.1p1 Multiple Vulnerabilities
Plugin ID: 269984 Port: tcp/2323 CVE: CVE-2025-61985
The version of OpenSSH installed on the remote host is prior to 10.1. It is, therefore, affected by multiple vulnerabilities: - ssh in OpenSSH before 10.1 allows control characters in usernames that originate from certain possibly untrusted sources, potentially leading to code execution when a ProxyCommand is used. The untrusted sources are the command line and %-sequence expansion of a configuration file. (A configuration file that provides a complete literal username is not categorized as an untrusted source.) (CVE-2025-61984) - ssh in OpenSSH before 10.1 allows the '\0' character in an ssh:// URI, potentially leading to code execution when a ProxyCommand is used. (CVE-2025-61985) Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.
Javasolt megoldás
Upgrade to OpenSSH version 10.1/10.1p1 or later.